Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Med Primatol ; 51(5): 264-269, 2022 10.
Article in English | MEDLINE | ID: covidwho-1916196

ABSTRACT

INTRODUCTION: In early 2020, the California National Primate Research Center implemented surveillance to address the threat of SARS-CoV-2 infection in its nonhuman primate colony. MATERIALS/METHODS: To detect antiviral antibodies, multi-antigen assays were developed and validated on enzyme immunoassay and multiplex microbead immunofluorescent assay (MMIA) platforms. To detect viral RNA, RT-PCR was also performed. RESULTS/CONCLUSION: Using a 4plex, antibody was identified in 16/16 experimentally infected animals; and specificity for spike, nucleocapsid, receptor binding domain, and whole virus antigens was 95.2%, 93.8%, 94.3%, and 97.1%, respectively on surveillance samples. Six laboratories compared this MMIA favorably with nine additional laboratory-developed or commercially available assays. Using a screen and confirm algorithm, 141 of the last 2441 surveillance samples were screen-reactive requiring confirmatory testing. Although 35 samples were reactive to either nucleocapsid or spike; none were reactive to both. Over 20 000 animals have been tested and no spontaneous infections have so far been confirmed across the NIH sponsored National Primate Research Centers.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/diagnosis , RNA, Viral , Sensitivity and Specificity
2.
PLoS Pathog ; 18(4): e1009925, 2022 04.
Article in English | MEDLINE | ID: covidwho-1808578

ABSTRACT

Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable but low levels of antiviral antibodies after infusion. In comparison to the control animals, CCP-treated animals had similar levels of viral RNA in upper and lower respiratory tract secretions, similar detection of viral RNA in lung tissues by in situ hybridization, but lower amounts of infectious virus in the lungs. CCP-treated animals had a moderate, but statistically significant reduction in interstitial pneumonia, as measured by comprehensive lung histology. Thus overall, therapeutic benefits of CCP were marginal and inferior to results obtained earlier with monoclonal antibodies in this animal model. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antiviral Agents , COVID-19/therapy , Humans , Immunization, Passive , Macaca mulatta , RNA, Viral , COVID-19 Serotherapy
3.
PLoS Pathog ; 17(7): e1009688, 2021 07.
Article in English | MEDLINE | ID: covidwho-1298083

ABSTRACT

There is an urgent need for effective therapeutic interventions against SARS-CoV-2, including new variants that continue to arise. Neutralizing monoclonal antibodies have shown promise in clinical studies. We investigated the therapeutic efficacy of a combination of two potent monoclonal antibodies, C135-LS and C144-LS that carry half-life extension mutations, in the rhesus macaque model of COVID-19. Twelve young adult macaques (three groups of four animals) were inoculated intranasally and intra-tracheally with a high dose of SARS-CoV-2 and 24 hours later, treated intravenously with a high (40 mg/kg) or low (12 mg/kg) dose of the C135-LS and C144-LS antibody combination, or a control monoclonal antibody. Animals were monitored for 7 days. Compared to the control animals, animals treated with either dose of the anti-SARS-CoV-2 antibodies showed similarly improved clinical scores, lower levels of virus replication in upper and lower respiratory tract, and significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. In conclusion, this study provides proof-of-concept in support of further clinical development of these monoclonal antibodies against COVID-19 during early infection.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , Lung/pathology , SARS-CoV-2/immunology , Virus Replication , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/pathology , COVID-19/virology , Disease Models, Animal , Female , Lung/diagnostic imaging , Macaca mulatta , Male , Multivariate Analysis , Radiography , Respiratory System/virology , SARS-CoV-2/physiology , Time Factors , Treatment Outcome , Virus Replication/immunology
4.
J Med Primatol ; 49(6): 322-331, 2020 12.
Article in English | MEDLINE | ID: covidwho-627966

ABSTRACT

BACKGROUND: The emergence of SARS-CoV-2 and the ensuing COVID-19 pandemic prompted the need for a surveillance program to determine the viral status of the California National Primate Research Center non-human primate breeding colony, both for reasons of maintaining colony health and minimizing the risk of interference in COVID-19 and other research studies. METHODS: We collected biological samples from 10% of the rhesus macaque population for systematic testing to detect SARS-CoV-2 virus by RT-PCR and host antibody response by ELISA. Testing required the development and validation of new assays and an algorithm using in laboratory-developed and commercially available reagents and protocols. RESULTS AND CONCLUSIONS: No SARS-CoV-2 RNA or antibody was detected in this study; therefore, we have proposed a modified testing algorithm for sentinel surveillance to monitor for any future transmissions. As additional reagents and controls become available, assay development and validation will continue, leading to the enhanced sensitivity, specificity, accuracy, and efficiency of testing.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/veterinary , Macaca mulatta/virology , Monkey Diseases/virology , Pandemics/veterinary , Pneumonia, Viral/veterinary , Animals , Antibodies, Viral/blood , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/virology , Feces/virology , Humans , Pneumonia, Viral/virology , RNA, Viral/isolation & purification , SARS-CoV-2 , Sentinel Surveillance/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL